Rapid nanopore discrimination between single polynucleotide molecules.
نویسندگان
چکیده
A variety of different DNA polymers were electrophoretically driven through the nanopore of an alpha-hemolysin channel in a lipid bilayer. Single-channel recording of the translocation duration and current flow during traversal of individual polynucleotides yielded a unique pattern of events for each of the several polymers tested. Statistical data derived from this pattern of events demonstrate that in several cases a nanopore can distinguish between polynucleotides of similar length and composition that differ only in sequence. Studies of temperature effects on the translocation process show that translocation duration scales as approximately T(-2). A strong correlation exists between the temperature dependence of the event characteristics and the tendency of some polymers to form secondary structure. Because nanopores can rapidly discriminate and characterize unlabeled DNA molecules at low copy number, refinements of the experimental approach demonstrated here could eventually provide a low-cost high-throughput method of analyzing DNA polynucleotides.
منابع مشابه
Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore.
Nanoscale pores have potential to be used as biosensors and are an established tool for analysing the structure and composition of single DNA or RNA molecules. Recently, nanopores have been used to measure the binding of enzymes to their DNA substrates. In this technique, a polynucleotide bound to an enzyme is drawn into the nanopore by an applied voltage. The force exerted on the charged backb...
متن کاملMicrosecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules.
Single molecules of DNA or RNA can be detected as they are driven through an alpha-hemolysin channel by an applied electric field. During translocation, nucleotides within the polynucleotide must pass through the channel pore in sequential, single-file order because the limiting diameter of the pore can accommodate only one strand of DNA or RNA at a time. Here we demonstrate that this nanopore ...
متن کاملDetection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode
This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...
متن کاملHelicase SPRNTing through the nanopore.
Enzymes that move directionally on single-stranded nucleic acids are at the core of emerging nanopore sequencing technology. Of a particular use are DNA helicases, molecular motors that bind single-stranded DNA (ssDNA) independently of its sequence and use ATP to fuel their directional motion along the DNA (1). In nanopore-based sequencing, a pore formed by a protein channel embedded into a lip...
متن کاملDriven polymer transport through a nanopore controlled by a rotating electric field: off-lattice computer simulations.
The driven translocation kinetics of a single strand polynucleotide chain through a nanopore is studied using off-lattice Monte Carlo simulations, by which the authors demonstrate a novel method in controlling the driven polymer transport through a nanopore by a rotating electric field. The recorded time series of blockade current from the driven polynucleotide transport are used to determine t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 3 شماره
صفحات -
تاریخ انتشار 2000